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II 
. . . a tedious argument 

Of insidious intent 

To lead you to an overwhelming question . . . ” 

T. S. Eliot 
The Love Song of J. Alfred Prufrock 
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ERRATUM 

Page 7, Eq. i2.4): subscript should read’symmetric octet ” 

Page 10, line 3: “pentadeciment” should read “pentadecimet” 

Page 17, line 12 to end of paragraph: substitute 

“Therefore, one simple case we consider is three pseudo- 

scalars in a totally symmetric state which can be either an 

octet or a decimet. The decimet may be ‘exotic’ in the usual 

quark model sense so, for simplicity, we will neglect it. The 

case of the symmetric octet is easily worked out and is given in 

Table VII. [ We thank Haim Harari for calling our attention to 

the possibility of a totally symmetric [ 101 . See Y. Dothan and 

H. Harari, Suppl. al Nuovo Cimentoj, 48 (19651 for the complete 

decomposition of [:I @ L8-1 @ [El . 1 

Page 19, 3 lines up : Tables II, III, V, and VI should read II, III, V, VI 

and VII. 

Page 29, Coeff. of rr°K 
$0 

should read (ZT-S-A). 

Coeff. of np” should read -$-(3T+S). 

Coeff. of nK 
“0 1 

should read x (-3T+S+3A). 

Page 36, Coeff. of A !?I should read & (3T+S) 

--o Coeff. of ti should read & (-3T+S+3A) 

We are grateful to M. Bander and R. Kingsley for finding the errors in 

the original manuscript. 
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I. INTRODUCTION 

The recent discovery I,2 of narrow resonances at masses of 

3.1 and 3. 7 GeV/c’ has stimulated an enormous amount of theoretical 

speculation. That the new particles appear to respect G-parity in their 

decays3 and can be photoproduced diffractively4 suggests strongly that 

in spite of their very small widths, the newly-discovered objects are 

hadrons . -4mong the speculations which interpret the narrow states 

as hadrons, one attractive possibility is that they are composed of a 

fourth, massive quark which bears a new quantum number called charm. 

This suggestion carries a great many implications, 
5 not the least of 

which is the prediction of a rich spectrum of additional particles awaiting 

discovery. The conditions necessary for the discovery of the conjectured 

states depend in detail upon their decay modes, since the least massive 

charmed particles would be stable against strong decays. Thus one needs 

to know, in addition to the rudiments of SU(4) spectroscopy, how the 

charmed particles participate in weak and electromagnetic interactions. 

Perhaps the most elegant way to represent the weak and electro- 

magnetic currents of the four quarks is by analogy with the leptonic 

6 
currents, as first discussed by Bjorken and Glashow and elaborated 

by Glashow, Iliopoulos and Maiani. 
7 

Indeed, from the viewpoint of 

renormalizable theories of the weak and electromagnetic interactions, 

this representation of currents supplies the charmed quark with its 
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raison d’e tre. In the Bjorken-Glashow-Iliopoulos-Maiani scheme, the 

Cabibbo -favored weak transition ( 0~ cos 0 ) of the charmed quark is 
C 

to a strange quark. This is the basis for the oft-repeated observation* 

that the onset of charmed particle production would be signaled by a 

substantial increased in the multiplicity of strange particles. No such 

strange particle avalanche has been observed, in spite of the fact that 

if charmed particles exist on the expected mass scale, they have 

almost surely been produced. 

It is likely that k(3100) production in hadron-hadron collisions 

will be accompanied by particles of nonzero charm. 9 Because 

diffraction is primarily a reflection of inelastic (nondiffractive) 

processes, the apparent rise 10 in the cross section for yN - S(3100)N 

from 11.1 GeV to approximately 100 GeV may indicate that charmed 

hadrons are being photoproduced at Fermilab. To set a mass scale 

for the charmed mesons, we assume that y(3100) and $(3700) are 

vector states of hidden charm. Then the small width of $(3700) suggests 

that the charmed meson masses exceed 1.85 GeV/c2. and first-order 

SU(4) breaking5 of a quadratic mass formula yields 2. 2 GeV/c2 for the 

mass of the charmed pseudoscalar mesons D +, D”,B? D-, F+, F-. on 

the basis of these estimates it is expected that the threshold for pro- 

duction of a pair of charmed mesons in e’e- annihilation is ) 4 GeV. 

Indeed, the considerable width of the enhancement observed at 4.15 GeV 

may indicate that this state lies above charm threshold. However, not 
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even in the SPEAR experiments (where the ratio of charmed to uncharmed 

hadrons is likely to be largest) has there been any report of copious kaon 

production. This has led to considerable anxiety among theorists that 

the charm interpretation is incorrect. 
11 

We shall comment below on 

the validity of these misgivings. 

Rough estimates5 suggest that the dominant decays of the least 

massive charmed hadrons should be the nonleptonic weak transitions. 

Since the positive, unambiguous identification of a single charmed 

particle is of immediate importance, we have explored in detail the 

systematics of decays into some two-body and quasi-two-body channels, 

and several three-body channels. The mean multiplicity of charged 

particles in e+e- annihilation is only about 4.3 at 4.8 GeV. 
12 

Therefore, 

if charmed particles are being produced as copiously as expected, they 

do not decay into large numbers of particles unless there are a great 

many neutral products. 

An essential complication in the discussion of nonleptonic weak 

decays is the issue of a possible enhancement of certain modes over 

others. Recall that in strangeness-changing decays the 1 AI 1 = g 

rule (“octet dominance”) works extremely well. Typically, a 

1 AI [ = $ amplitude is less than about 5 percent of the corresponding 

1 AI 1 = $ amplitude. The conventional wisdom, especially following 

the work of Gaillard and Lee 
13 and of Altarelli and Maiani, I4 is that 

the strong interactions work to enhance the [ AI\ = i piece of the 
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nonleptonic weak Hamiltonian by a factor of roughly 5, whereas matrix 

elements of the 1 AI 1 = 5 piece are reduced. The enhancement 

mechanism has yet to be fully understood. Unfortunately, for the charm- 

changing decays we do not yet have the benefit of observation, but there 

is strong theoretical motivation (reviewed in Chapter III below) to 

anticipate a similar enhancement-suppression phenomenon. We feel it 

is essential to take account of it in discussing final states. 

The plan of this article is as follows. In the next Section, we 

illustrate the sort of difficulties one might anticipate in the search for 

charm by asking a hypothetical question: How would the kaon have 

been found if the strange quark had been very much more massive 

than the nonstrange quarks? In Sec. III, we review the SU(3) and SU(4) 

structure of the hadronic weak currents and consider the algebraic 

properties of the nonleptonic Hamiltonian. We review the motivation 

for sextet dominance of charm-changing transitions and discuss the 

general consequences for the decays of charmed pseudoscalar mesons. 

In Sec. IV, we discuss in detail the charmless final states resulting 

from the weak decay of a charmed pseudoscalar into two pseudoscalars, 

or two vectors, or a pseudoscalar and a vector, or three pseudoscalars 

in a totally symmetric state, or a baryon and an antibaryon. Our 

+- 
expectations for the gross properties of the final states in e e annihilation 

just above charm threshold make up Sec. V. These differ significantly 

from what is commonly believed. Section VI contains a summary of our 
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principal conclusions. In a mathematical appendix we summarize some 

of the properties of the representations of SU(4) and other aspects of 

that not-yet-familiar algebra. Section III and the Appendix are somewhat 

technical and may be omitted by the reader concerned chiefly with results. 

Although we find the charm scheme aesthetically attractive, we 

offer the present discussion not in a spirit of advocacy, but in the hope 

that the issues can more sharply be defined. 

II. IF THE KAON MASS WERE 2 2 GeV/ c2 

Before engaging in a calculation of the amplitudes for charmed 

meson decays, we will find it instructive to develop some insight into 

the properties of a massive, weakly-decaying system. To do so, we 

invent an artificial problem which has a well-defined solution, free of 

the ambiguities of charmed particle decay: We imagine the kaon mass 

to be greater than about 2 GeV/c’, and compute the relative rates for 

its allowed decays. The results of our calculation suggest that if 

strange particles were as massive as we expect the charmed mesons to be, 

they too might still be awaiting discovery. 

We shall assume, as discussed in the Introduction and elaborated 

in the next Section, that an enhancement of the octet part of the nonleptonic 

weak Hamiltonian underlies the [AI1 = irule. The evaluation of the 

matrix elements is then a standard exercise, which we have carried 

out for the four classes of decays 
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K + 9.9 (2.1) 

K - %++ F“ (2.2) 

K - ‘@y in a symmetric octet <. (2.3) 

K - ( *A*@ )spmetric octet (2.4) 

“:a 
where9aand 02;rdenote(nonstrange) pseudoscalar and vector mesons, 

respectively. In this fictitious world, it seems likely that n-r) ’ mixing 

would be ideal. 
15 

so that 

q = (2)~‘[ii; + d;l] 

would be lighter than the kaon, whereas 

n l =ss 

would be heavier. The absolute squares of the enhanced matrix elements 

for K’ decay 
16 

are collected in Table II Each of the classes of 

decays (2.1) - (2.4) is characterized by a distinct strength parameter, 

which we cannot estimate without making further detailed assumptions. 

The only point we wish to make with this calculation is that there 

are many decay modes which may be of comparable importance. Nearly all 

of them involve one or more neutral particles, and would be difficult 

to observe without good sensitivity to both charged and neutral particles. 

The familiar K+ - v’n” mode, which signals a small violation of the 

I AI 1 = k rule, is unlikely to compete with the enhanced decays. 
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Although this example has been rather contrived, it does accurately 

mimic our subsequent conclusions about the difficulty of finding charmed 

mesons in effective (or missing) mass distributions. It also demonstrates 

that the origin of this difficulty is kinematical, i. e., simply reflects 

the large number of open channels, and does not depend sensitively upon 

the form to be chosen for the effective charm-changing weak Hamiltonian. 

III. REPRESENTATION CONTENT OF THE 
WEAK INTERACTION HAMILTONIAN 

In preparation for the calculations to follow, we shall now 

review the SU(4) structure of the hadronic weak currents. We represent 

the four quark fields as a composite spinor 

(3.1) 

(We suppress any dependence on a color degree of freedom. ) 

The three quarks u, d, s form the familiar basis for the fundamental 

representation of SU(3), and the c-quark is an SU(3) singlet which carries 

the new quantum number charm. We take the charged weak current to be7 

J =;(dcos Bc + s sin flc) + CCS c0S 9 
C 

- d sin Bc). (3. 2) 
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Since we are not concerned with the space-time structure of the current, 

we adopt an abbreviated notation in which, for example, ud represents 

&?l-y5)d. It is convenient to write the current as7 

J=iJfl$, (3.3) 

where ois the 4 x 4 matrix 

(5c” u, ( ) 0 0 

and 

u= ( 
-sin 0 C CDS 0 

C 

cos 6 C sin f3 
C 1. 

(3.4) 

(3.5) 

Denoting the Hermitian conjugate field 4 cut 
by + (y, we may write the 

current as 

(3.6) 

which is a linear combination of states transforming as the direct 

::; 
product2 @&=Q@L. Because the matrix flis traceless, the 

singlet does not appear in (3.6), i. e., the weak current transforms 

like a member of a 15-dimensional representation of SU(4). 

We take the familiar current-current form for the nonleptonic 

weak Hamiltonian, 

zw = ; &r+ + J%) . (3.7) 
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It will be useful for the subsequent discussion to understand the SU(4) 

transformation properties ofrW Clearly, it transforms as the 

” ‘” 
symmetric product (15 QD 1,5 16%) (12 @ 12). The pentadeciment is 

self-conjugate and the Clebsch-Gordan series is 

I,5 @ I,5 = & @I I& f3 lzA Q 2_Os 8 4,5A 63 4,5A Q 8js , (3.8) 

where the subscript S or A indicates that the representation occurs in 

a symmetric or antisymmetric product. (Explicit wave functions for 

the irreducible representations are listed in the Appendix. ) Because 

of the symmetric nature of ZW, only symmetric representations occur. 

Therefore in general we should expect 

i3”, T ;@1,5s@2_o@8_4, (3.9) 

but in fact the 1,5 does not occur for the current of interest (3. 2). We 

show in the Appendix that the absence of the 1,5 is a consequence of 

(i) trace c= 0 and (ii) the anticommutator {go’> a il . Of course, 

for charm- or strangeness-changing transitions the singlet also does 

not enter, so for these 

zw J 2,o 63 84. (3. IO) 

As Kingsley, et al., 
17 

have remarked, a direct application of 

the decomposition (3. IO) to matrix elements of physical interest is 

likely to be unrewarding because SU(4) is a badly-broken spectroscopic 
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symmetry. However, SU(3) invariance is a much better first approxi- 

mation, so it may be more lucrative to exploit the SU(3) transformation 

properties of L$$. Decomposing the SU(4) representations with respect 

to SU(3) subgroups, one finds 

-‘; 
z,o = [aI c3 kg1 e3 [k 1 (3.11) 

8_4=&*1 @{[~*;I +[i$l}@{[~l tl3[[81@~[2_71) 

@{[?I +lQ-& @[aI , (3. 12) 

where we have used square brackets to distinguish representations of 

SU(3) from those of SU(4). and the subscript M denotes a representation 

of mixed symmetry. In the 2,0, the octet is charm conserving ( AC = 0). 

iii 
and [ 6.1 and [ $- 1 correspond to AC = i1, respectively. In the 82, the 

singlet, octet, and [ ZJI are charm conserving, {[L 
::: 

1 @ [ iz; I) and 

{ [ 21 @ [ 1-5~1 } correspond to AC = h-1, and [ k’l and [ 51 correspond 

to AC = +2. The 1 AC 1 = 2 pieces do not contribute to zW, and we show in 

:li 
the ‘Appendix that the [zl and [ 3 I do not occur in the Hamiltonian (3.40). 

It might be expected a priori that the reduced matrix elements of 

every contributing SU(3) representation would be of the same order. 

However, recalling the familiar situation for strangeness -changing decays, 

in which matrix elements of the octet operators are enhanced compared 

to those in the [ ~71 , we must ask what is the analog of the [AI] = h 

rule for charm-changing decays. It has been shown 
13,14 

that, in an 
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asymptotically free, SU(3)-invariant gauge theory of stronginteractions, 

the gluons enhance the 1 AI 1 = i part of XW relative to the 1 AI! = $ 

terms. If these arguments were applied to an SU(4)-invariant theory, 

one would find that the 2$ is enhanced relative to the 82. This is easy 

to see because the suppressed [ 2J1 is contained in the 82. Looking 

back to (3.11), we find that Ql-dominance means octet enhancement for 

AC = 0 transitions and sextet enhancement for 1 AC [ = 1 terms. 
18 

The 

conclusion that [ fLI and rk”l are enhanced relative to [ 1,5;1 and [ 1,5,,11 

undoubtedly does not rest on the assumption of SU(4)-invariance. Had we 

followed the line of reasoning of Ref. 13, we should have found that the 

term in ZW antisymmetric in quarks is enhanced relative to.the symmetric 

term, which implies sextet dominance. 

Hereafter, then, we shall assume sextet dominance of the non- 

ieptonic decays of charmed particles. Because SU(4) is a grossly broken 

symmetry, we cannot reliably compare the magnitude of the sextet 

enhancement factor with that of the octet enhancement factor. Let us 

consider the decays of the SU(3) triplet of C = 1 pseudoscalar mesons 

D+, Do, F+, which are expected to be the lightest charmed particles. We 

wish to evaluate the matrix element <PC [ zw [h>, where 1 PC> denotes 

a charmed pseudoscalar and 1 h> is a charmless hadronic final state. 

The object <PC1 zw t ransforms under SU(3) like [kl (a? [?I = [il fB [ 1~1. 

Consequently, in the limit of SU(3) invariance, the final state 1 h> must 

transform like an octet or decimet. Suppose first that [h> consists of 
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a pair of particles, each a member of an SU(3) octet. The product of 

two octets includes a decimet [ 121 , as well as symmetric and anti- 

symmetric octets [S,f and [zAl , so in general such a decay will 

involve three SU(3)-invariant reduced amplitudes. A considerable 

simplification occurs when the two particles are identical bosons since, 

according to the Pauli principle, they must be in a state which is symmetric 

under particle interchange. Since they must couple to zero total angular 

momentum, and therefore be symmetric in space x spin, they must also 

be in a state symmetric in SU(3) indices. This requirement excludes the 

[ 121 and [iAl. As a result, there is a single reduced amplitude for 

the enhanced decays of a charmed meson into two identical bosons. 

Results for decays into a pair of pseudoscalars, a pair of vectors, a 

pseudoscatar--vector pair, three pseudoscalars in a totally symmetric state, 

or a baryon and antibaryon will be presented inthenext section. The fore- 

going analysis is modified somewhat by octet-singlet mixing, at least 

for decays involving vector mesons. In the quark model, a nonet 

symmetry holds approximately, so we shall allow the final state bosons 

to be all members of a nonet. For the pseudoscalars, we add to our 

: considerations n ‘(958) = (3)--r u; + dd + ss] , ignoring the small ,, -,,’ 

mixing. For the vectors, we assume that w = (2)-’ [u; + dil and 

4 = ss are ideally mixed. 

We have not analyzed the weak decays of other charmed mesons, 

such as the vector triplet, because it seems likely that the dominant 



-14- FERMILAB-Pub-751 21-THY 

decays of these presumably heavier particles will be strong or electro- 

magnetic. For the same reason, we have not considered the decays of 

charmed baryons. 

IV. ENHANCED NONLEPTONIC DECAYS OF THE CHARMED MESONS 

We now discuss nonleptonic weak decays of the SU(3) triplet of 

charmed pseudoscalar mesons D +, Do, F+, assuming sextet dominance 

of the charm-changing Hamiltonian. In the Appendix we show that the 

enhanced part of the charm-lowering Hamiltonian transforms as 

qff = [6-l 22 cos2f3 
C 

+ 2[kl 23 sin0 
C 

cos l3 
C 

+ [6133sin2 Q C’ (4.1) 

As already remarked in Sec. III, <PcIeff transforms as [?I 69 [kl = 

[:I 62 [ 1,ol~ If we wish to discuss decays into pairs of particles, each 

of which resides in an octet or nonet, we need only know the coupling 

of the two octets (or nonets) to [il and [ l_Ol . This can be obtained from 

Tables of SU(3) Clebsch-Gordan coefficients or computed using the tensor 

formalism contained in the Appendix. There we also indicate how the 

U(3) nonet structure can be accommodated. 

Decays into two pseudoscalars or two vectors each depend upon 

a single reduced matrix element (which may be different for .95%-d LY,-tY-). 

The squared matrix elements (which measure the branching ratios up 
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to phase space corrections) for each decay mode are displayed in Table II, 

for D+ and F’ decays, and in Table III, for D 
0 

decays. I9 For complete- 

ness we have included rates proportional to sin’ ec cos2 ec 
4 

and to sin 0 
C’ 

A striking feature of Table II is the absence of any enhanced D+ 

decay which is proportional to cos4 Bc. It is understood most simply 

by a V-spin conservation argument presented in the Appendix. The only 

3 + 
Cabibbo favored nonleptonic decays of D+ into.@%rwe K pi and 
- 

K*O Pf? which proceed via [ QGI . Ob servation of these modes would 

provide a direct measure of the magnitude of the unenhanced amplitude. 

This is not to say that there are no enhanced nonleptonic decays of order 

4 
cos 

eC’ 
They can in principle occur in final states which couple to 

[ I_OI in, e.g. fhe@y d mo e or the baryon-antibaryon mode to be discussed 

below. However, from the perspective of the quark model,[ ~_oI is an 

exotic channel so it may well be that, at least in thep%ase, this would-be 

enhanced amplitude is not enhanced at all. 
20 

If all cos4 ec nonleptonic 

modes are sufficiently suppressed, the squared matrix elements of 

order sin’ 0 
C 

cos2 oc may accurately reflect the branching ratios. If 

the magnitude of the sextet enhancement is comparable to that of the 

observed octet enhancement, we expect the nonleptonic rates proportional 

to sin’ ec 2 
cos Bc to be of the same order as the semileptonic decays 

proportional to ~0s’ ec, 
+ -0 + 

such as D - K P Y. Thus for D +, but 

+ 
apparently not for D” or F , the possibility exists that semileptonic 

modes might compete favorably with nonleptonic decays. With such a 
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large Q-value for the decay, it is likely that many different semileptonic 

decays may occur, no one of which will have a large branching ratio. 

Another remark to be made is that the only dominant decay of 

Do into two charged particles is the K-ir+ mode, which accounts for 

I/ 3 of thmecays. There is no way reliably to estimate what fraction 

of all decays areq2~but we should be surprised if the branching ratio 

into K-n+ exceeded 10 percent. 
21 

We note that unlike the D’ or F+, 

the Do will always (in the dominant decays ) yield a I?. 

Turning to the pseudoscalar-vector decay modes, the situation 

is immediately more complicated, since, as noted in the preceding section, 

there will be three reduced amplitudes instead of only one. We list the 

general case in Table IV, but this is clearly not very useful for phenomeno- 

logical purposes. For illustrative purposes, we have tabulated the 

decays into symmetric octet states in Tables V and VI, about which 

we shall have more to say in the next section. 

As for the general case, we have little to say until such time as 

these mesons were found. Then it would be exceedingly interesting to 

obtain the relative magnitudes of these enhanced decays. Thus, 

+ 
* a+$, D+ - I&+, 

+ 
observation of F and D 

+*o 
-TI K would establish the 

strength of the decimet amplitude as well as providing two tests of sextet 

dominance. Even if, as we suspect, the deciment amplitude is suppressed, 
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it will be important to determine the relative magnitude of the decimet 

to the “unenhanced” pentadecimet contribution. 

We would also like to get a feeling for the relative branching 

ratios for “direct” three-body or four-body decays, to compare with 

the quasi-two-body modes discussed above. Suppose we consider the 

decays into three pseudoscalar mesons. Clearly there are very 

many invariant amplitudes in general which would be both tedious and 

uninformative to work out. In the pseudoscalar-vector case above, 

the vector decays into two pseudoscalars in an antisymmetric SU(3) state. 

Thus, an interesting complement to the cases already discussed would 

be when no two pseudoscalars are in an antisymmetric SU(3) state. 

Therefore, one simple case we consider is three pseudoscalars in a 

totally symmetric state which can be either. an octet or a decimet. The. 

decimet may be “exotic” in the, usual quark model sense so’, for simplicity, 

fk& MilI neglect it. The case of the symmetric octet is easily worked out 

and is given in Table VII. [ We thank Haim Harari for calling our 

attention to the possibility of a totally symmetric [z] . See note added. 1 

So long as we have come this far, it is no more work to include 

baryon-antibaryon decays, listed in Table VIII. Most of these channels 

are near or below threshold, if the mass formulas are correct or if the 

wide bump at 4.15 GeV is an indication that charmed particles are being 

produced. Consequently, with the possible exception of the nucleon- 

antinucleon channels, these branching ratios are likely to be in the range 

of tiny to nonexistent. The only nucleon-antinucleon channel which is not 

Cabibbo disfavored is F+ - on. 
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Prior to the discovery of charmed mesons, the utility of any of 

these tables is limited, except as a guide to experimenters as to what 

channels might be favored. Certainly primary attention should be 

devoted to the enhanced decays of order COS40c. However, even before 

their discovery, we can ask to what sort of multiplicities and prong 

distributions would these modes lead if these charmed mesons are being 

pair produced in e-e’ annihilation. It is to such questions that we now 

turn. 

V. THE FINAL STATES IN e’e- ANNIHILATION 
ABOVE CHARM THRESHOLD 

One of our motives for this work has been the desire to sharpen 

the issues in the experimental search for charm. In this spirit, we now 

investigate the signatures for pair production of charmed mesons in 

electron-positron annihilation. Many of the suggested manifestations of 

a charm threshold which now enjoy currency were put forward rather 

casually, before the discovery of the new particles. For example, 

Glashow8 has remarked that charm threshold should be marked by sudden 

increases in (i) the mean multiplicity of hadrons, (ii) the yield of kaons, 22 

and (iii) the production of prompt muons. Others have anticipated a 

dramatic rise in a particular topological cross section. Having in hand 

the results of Sec. IV, we are in a position to make more informed 

speculations. 
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We shall discuss the properties of the charmed final states 

produced in the reactions 

+- 
e e - D+D- , (5. la) 

+- 
e e + D”$ (5. Ib) 

+- 
ee - F+F-, (5. Ic) 

which for the purpose of discussion we shall assume to occur with equal 

cross sections. In the SU(4) symmetry limit, reaction (5. Ib) is forbidden, 
- 

just as e+e- - K°Ko is prohibited in exact SU(3). In view of the large 

mass difference between charmed quarks and nonstrange quarks, we 

doubt that a very significant suppression will occur. Furthermore, 

because the allowed reaction 

+- 
e e 

_ DOD:I’O 
(5.2) 

will lead to at least one Do in the final state, the assumption of equal 

rates for reactions (5. 1) appears to be a sensible guess. Since we have 

no reliable way to judge the relative importance of the decay modes. P.J?? 

“y?< py and .!!?p$!? we must treat them separately. 

The gross properties of the charmed final states in reactions (5. 1) 

are shown in Table IX for each of the decay schemes. We have based 

the entries in the Table on the stable particles which result from the 

Cabibbo-favored decays enumerated in Tables II, III,V, VI and VIIof Sec. IV. “ 

* 0 * -6 
For these purposes, the “stable particles” are TT , TI , K , K” and K , and 

photons from sources other than rr” decay. In addition to the mean 
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multiplicities of the stable particles, we have tabulated the K/rr ratio, 

the mean charged multiplicity, the prong probabilities Pn = on/ O, and 

the fraction of events containing kaons. The consistency of the entries 

for the various decay schemes gives us confidence in the generality of 

our conclusions. 

The only published data which may readily be compared with our 

expectations are the SPEAR measurements of <n >. 
12 

ch 
In the energy 

regime 4-5 GeV, the data are quite similar to the values in Table IX 

and show no dramatic departure from an extrapolation of the results 

at lower energies. Keeping in mind that significant production of 

uncharmed final states is likely to persist above charm threshold (the 

quark model suggests o(uncharmed)/ o(charmed) = 3/Z), we would not 

anticipate any sudden change in <n ch 
> as the energy is increased across 

charm threshold. Similarly, we have no reason to expect a pronounced 

increase in any one topological cross section, rather than a proportional 

increase in them alX. 

In charmed events, the mean multiplicity of kaons (charged plus 

neutral) will be approximately 1.8 /event. Whether this number is so 

large as to effect a sudden increase in the yield of K mesons of course 

depends on the properties of the charmless’background” events. In the 

SU(3) limit, the three-quark model suggests that roughly 4/9 of the events 

contain strange particles, 
24 and that the average kaon multiplicity is 

close to I/event. Taking too seriously the hints given by the quark model, 
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we may expect that just above charm threshold about 55 percent of all 

hadronic events will contain kaons, and the mean multiplicity of kaons 

will be approximately 1. 3/event. Thus even the most celebrated 

characteristic of charmed events, the fraction yielding kaons, might not 

give rise to a significant change in the character of hadronic events. 

As we noted in Sec. IV, the arguments of Gaillard, Lee and 

Rosner5’ 25 favoring nonleptonic over semileptonic decays together with 

‘the abundance of enhanced nonleptonic decays make copious muon emission 

very unlikely except in the decay of D*. Hence the theoretical evidence 

seems to favor no more than a modest increase in the production of 

prompt muons. 

We are unable to comment in detail upon the fraction of the total 

energy carried by neutrals. In lieu of a sophisticated analysis, we 

merely remark that according to Table IX the fraction of particles which 

are neutral 

0-T 
f. - 

<TO> + <K +K > + <y> 
0-O <no> + <K +K > + <y> + <n 

ch 
> 

assumes the values 

f,@??9) = 0.5, 

f,@?W= 0.4, 

f,@% =. 0. 5, 

(5.3) 

foC9%WC 0.5. 
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Although it would be premature to identify charm threshold with the 

onset of the notorious energy crisis I‘ on the basis of these apparently 

large fractions, the possibility is provocative. 

In summary, we expect events above charm threshold to differ 

only subtly from those below threshold. Most of the final states in 

charmed events will be complex, often with several neutrals. The 

great number of open channels and the presence of neutrals will make 

it difficult to reconstruct charmed particles in effective mass or 

missing mass distributions. As Lipkin has observed, 22 
only a small 

fraction (we estimate (16 /15) tan’ BC 1 of the events will exhibit apparent 

strangeness violation. 

VI. CONCLUSIONS 

Charmed mesons may prove to be rather elusive objects in 

hadronic channels because it is unlikely that a single hadronic decay 

mode will predominate. Although the relative rates expected for various 

decay modes do depend explicitly upon the form chosen for the charm- 

changing weak Hamiltonian, the conclusion that there should be many 

competing modes is implied essentially by kinematical considerations. 

A preponderance of the important nonleptonic modes consists of several 

particles including at least one neutral. Except in the case of the D* 

mesons, which may lack any enhanced, Cabibbo-favored nonleptonic 

decays, we do not expect the leptonic or semileptonic branching ratios 

to be appreciable. 
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In e+e- annihilations into hadrons the passage through charm 

threshold will not be marked by any spectacular qualitative change in the 

gross features of the final states. Quantitative increases in the fraction 

of events containing strange particles, in the mean multiplicity of kaons, 

and perhaps in the energy fraction carried by neutrals are likely to occur. 

The magnitudes of the expected changes were estimated in Sec. V. Our 

analysis makes it plausible that charm production blends more easily 

into the background of charmless events than has generally been recognized. 

This has the disappointing consequence that the hidden charm interpretation 

of the new narrow resonances will not easily be eliminated or established. 
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NOTE ADDED 

As indicated in the text, H. Harari has pointed out to us that three 

pseudoscalars can be coupled to form a totally symmetric decimet. 29 For 

completeness, we have added Table X, giving the Cabibbo-favored (cos20c) 

decay amplitudes into three pseudoscalars in a totally symmetric state. As 

we have seen previously in the decays into a pseudoscalar-vector or baryon- 

antibaryon pair, the only cos’ 63 c decays of D* allowed by sextet dominance 

are into a decimet. And as we remarked in connection with the $%Vhecays, 

it may be that the transition to the decimet is not enhanced. 

(Except for the v+K”n mode, the other three final states also result from a 

pseudoscalar-vector decay (Table IV). ) 
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Table I 

Relative Decay Rates for a Heavy K+ Meson 

Decay Mode 
Squared Matri2x Element 

sin20 
C cos e CX 

+ 
nI) 1 

-- -~----------~--------- ---____ 

P w 1 
----~---------------------------- 

P rl i/2 

+ 
lr w 112 

-----__--------------------~~~~~~ 
n+rln 9114 

++- 
TlTir 217 

+o 0 
TlTln I/ 14 
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Table II 

Relative Rates for F’ Decay a) 

COS 
+ 

4ec x 

= rl' 419 
- 

K+K” 113 

+ 
= n 219 

------------------------ 

P+o 213 
a+- 

K K 113 

cos2 ec sin2 ec x 

K+rj ’ 419 

K”lT+ 113 

+0 
Kr 116 

6 1118 
-____________-_____________ 

KDt+4 113 

K:#O P+ 113 

K*+P” 116 
:x+ 

K u 116 

a) Decays of D+ can be obtained by multiplying each mode by 

tan’ 6,. 
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. . 

Table III 

Relative Rates for Do Decay 

cos4 oc x 

a 
K r)’ 419 

K-r+ 113 

A0 II 6 

a 
Kt) I/ 18 

*- + 
K P 

K-4 

- 
“0 0 

K P 

*0 
K w 

113 

113 

116 

116 

coS2 13c sin2 92 

q)r) ’ Z/3 

- + 
ITTT 113 

K-K+ 113 

0 
= rl’ 219 

or) 116 

0 0 
TIT 116 

0 
=q 119 

$4 

*+ ;::- 
K K 

0 
UP 

P+P- 

0 0 
P P 

ww 

213 

113 

113 

113 

i/6 

$16 

,-- 

sin4 ec x 

KO( 419 

+- 
Kr 113 

0 0 
KTi 116 

KO,) I/ 18 

---_-_____________ 
K-P- I/ 3 

” 0 
K b 113 

K*‘P’ 116 

*0 
K w 116 
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Table IV. 

Decay Amplitudes for the Pseudoscalar-Vector Mode a) 

~0s’ e 
CX 

a+4 
to 

= P 

+ 
T w 

+ 
rlP 

0 f 
TP 

+-Tij 
KK 

-gK:kt 

rl’P 
+ 

T 

$ (T-2A) 

- & (T+2S) 

& (3T - 2s) 

- -&- (T-2A) 

T-S+A 

-(T +S +A) 

2S -- 
d-3 

t 

sin e 
C 

cos 6 
CX 

K+p” &(2T-S-A) 

K+U -A (2T+S+A) 

K+4 ZT-S+A 

n°K*+ -& (ZT+S-A) 

::+ 
nK $46~ +S +3A) 

+ *o 
lTK -2T-S+A 

K”p+ 2T-S-A 

II ‘K 
“f 

sin 2 
8, x 

+ *o 
KK -3T 

KOK*+ 
3T 
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cos2 Bcx sin@ 
C 

cos 6 x 
C 

&+ -3T rr+$ 2T 

- 
+ “0 

irK 3T rr+p” 

+ 
ll w 

+ 
VP 

0 + 
‘IT P 

- 
+ :I;0 

KK 

-3 *t 
KK 

I i 

d\iz (T+A) 

hi?i (-T+S) 

/; (3T+S) 

-fi (T+A) 

2T+S-A 

-2T+S+A 

sin 
2 

@c x 

K+p” &(T+S+A) 

+ 
Kw & (-T+S+A) 

& T?-S-A 

r°Kzk+ &(-T+S-A) 

:: + 
rlK & (3T-S-3A) 

+ “0 
TK -T + S- A 

0 + 
KP T+S+A 

2S 
777 rl ‘K 

::+ 

+& 
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2 
cos 9,x 

30 
KP 

0% 
lTK 

K-p+ 

f *- 
VK 

::;O 
tlK 

:; 0 
v ‘K 

-&(2T+S-A) 

-&2T-S-A) 

-T+S-A 

T+StA 

-& (-S3A) 

Jcs 

S+A 

+-A) 

i c 

K°K 
-Z-f0 

0 *o 
KK 

- ::c + 
KK 

+ *- 
KK 

+ - 
= P 

- + 
77 P 

a04 

r,4 

rl ‘6 

rl ,PO 

rl’w 

0 
VP 

17w 

0 0 
fl P 

0 
Trw 

-T+2A 

T-2A, 

-T+S-A 

T+S+A 
1 

-(T+S+A) : 

I 
T-S+A j 

-2 
$ 4s / 

zs ~ 
d-3 / 

1 

-+ ~ 

+ 

-&3T+S) ’ 

I s -- 
d-7 

-s 

-T+S 

sin2 O,-. x 

K04 

K”po 

0 K o 

rrOK*o 

“0 
rlK 

K+p- 

_ :I;+ 
liK 

17 ‘K 
:F 0 

-T-SA 

& (T+S+A) 

& (T-S-A) 

$ (-T+S-A) 

$w (-3T+S+3A) 

-(T+S+A) 

T-S+A 

2S 
-n 

a) T, S, and A are the reduced matrix elements for decay into a decimet, 
a symmetric octet, and an antisymmetric octet, respectively 
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Table V 

Relative Rates for F** $!9y (symmetric octet) a) 

4 2 
cos e x 

C 
sin 0 

C 
c0s2e 

CX 
+ :L+ 

7T 0 113 rl ‘K 219 

V’P 
+ 

219 

goK:r+ 
116 

+ -q 
KK 116 

+ 
CP II9 

& 116 

K”p+ 116 

f “0 
lTK 116 

K+p” s 1112 

f 
KU II 12 

0 :+ 
HK II 12 

:g + 
rlK II 36 

a) Rates for D+ decay are tan2 OC times the entries. 
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Table VI 

Relative Rates for Do - py (symmetric octet ) 

cos4 ecx 
2 

sin 0 
C 

COS20 
CX 

_L r) l K-o 219 rib 419 

- f 
KP 
* :;:- 

TK 

i&p” 

-C 
K w 

T 
ilK 

0 

416 

116 

116 

I/ 36 

219 

116 

116 

116 

116 

116 

116 

119 

119 

1118 

i/18 

sin 
4 

.9 X 
C 

rl ‘K 
;:; 0 

219 

Kfp- 116 

- Q+ 
lTK i/6 

KOdJ 116 

KOpO f/12 

,oK*o II 12 

0 
KU 1112 

rlK 
‘,k 0 

iI 36 
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Table VII. 

Decays into Three Pseudoscalars in a Symmetric Octet a) 

F+ 

4 
cos 0 x cos’ eCsin2Q X 

- 
K+K’rj * 114 

0 f 
Kriu’ 114 

++- 
TTTlTl 116 

+ 
r r)‘v’ 116 

+ 
37 rlrl’ 116 

rr+K+K- 1112 

+ o-5 
rKK 1112 

+oo 
illTlT 1124 

+ 
TT rltl 1124 

K+K+K- 

+o 
Krr r)’ 

- 
K+K” K” 

++- 
Knn 

+oo 
Krrn 

K+Vl* 

K+rl rl 

116 

416 

118 

II 12 

II 12 

1124 

i/24 

i/24 

a) corresponding rates for D+ obtained by multiplying by tan’ 0 
C’ 
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4 COS ec x 

K-a+~ ’ 114 

-ij 
K v'rl' l/6 
-- 
K°KoKo 116 

TO 
Kn q’ i/a 

A+,- 1112 

ZK+K- iI 12 

grrOrrO 
l/24 

0 
K rlrl l/24 

0 
K rlrl’ l/24 

cos2 e C 
sin’ Bc x 

K+K- r~ ’ 

f- 
==rl 

0 0 
77 TT 7)’ 

K+K-q 

- 
K°Ko,l 

0 
ll Ilrl’ 

0 0 
nvrl 

0 0 0 
lTTT 

+-0 
Tlirn 

K+K-rr” 

l/4 

l/4 

l/4 

3116 

118 

118 

118 

418 

118 

1112 

II 12 

1116 

I/ 16 

I/ 24 

1124 

I/ 24 

l/48 

c 
sin4 Bc x 

K+n-rj ’ 114 

0 
K rl'rl' 116 

K”K”z 116 

00 
Kn q’ 118 

KOlT+V- I/ 12 

K’K+K- l/l2 

KOITO,10 1124 

KOVl l/24 

0 
K rlrl’ l/24 
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Table VIII 

Amplitudes for Baryon-Antibaryon Decays 

cos2 8, x 

.x+Ti -&(3T+ZS) 

- 
7z+x” J$ CT-=) 

AT J+ (3T-2S) 

0- 
xz -&(T-2A) 

Pi T-S+A 

z 05 -(T+S+A) 

cos e C sin e 
CX 

p2 & (ZT-S-A) 

PT -&(bT-St3A) 

xog= -& (ZT+S-A) 

z & (6TtSt3A) 

+=T 
2 s -2T-StA 

‘-= 
nX ZT-S-A 

sin’ Bc x 
- 

pEO -3T 

1 
nE 3T 
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cos2 ec x 

(j Y 
zz -3T 

*.- + - Ln 3T 

cos e 
C 

sin8 x C - 
z+z” d-i(TtA) 

x+n J 
z T (-3TtS) 

Y 
AZ J 

$ (3T+S) 

z”.F -di! (T+A) 

Pi 2T+S-A 

&= -2TtStA 

2 
sin B X 

C 
-0 

P= & (TtS+A) 

Ph -&g (-3T-S+3A) 

O-= 
x5 

1 
x(-TtS-A) 

s -&3T-S-3A) 

z 
+-O 

5 -TtS-A 

T 
n.Z TtStA 
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cos ZRC x 

OT 
5 Ix - L(Zr+S-, 

d2 

20; v&(2T-S-A) 

-Y 
sz -Tts-A 

z+ p T+S+A 

An $'-St3A) 

so n -&(S+3A) 

cos e 
C 

sin8 X C 

nn -T+ZA 

,O,o -E T-2A 

-Y 
'=, z -T+S-A 

PP TiS+A 

+ -T 
zz -(TtStA) 

-Y 
-zz T-StA 

x0 x -&(-3TtS) 

AZ &(3T+s) 

z"P -s 

AX s 

sin’ e X 
C 

nA &=(3TtS-3A) 

3 
nZ -&(T+s+A) 

2 02 &(-T+S-A) 

2 -j(-3T+S+3AI 

.- 

Pz+ -(T+S+A) 

x.-g= T-S+A 
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2 
-37- 

2 s s s 
? r- 

Es 
,,’ ? 

0 
I-6 : 
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A 
0 a r- N r- 

: -A N’ N’ N’ 

A 



-37b- FERMILAB-Pub-751 21-THY 

Table X 

cos’ tic Decay Amplitudes for 3 Pseudoscalars (totally symmetricla 

ZK+ II’ 

giK+ 0 T 

KOK+ rl 

++- 
Tlrrr 
too TiTrTi 
+ + - 

nKK 

+ 0-c 
rrKK 

t 
= u'rl' 
t 

TT 17R' 
+ 

lr rlrl 

+3 
rKT7 
tt - 

llrK 

+ o-0 
lrrK 

-- 

K+K°Ko 

F+ - _&Fy,oy 

&E 

@T 

-+T 

E+T 

;Et$T 

E - ZT 

E+T 

E 

d? E 

+E - ST 

D+- .9ii$? i 
3h/b T 

2 

-3T 

;fiT 

3T 
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+ - 
IT K q* 

+-0 
TKii 

+ - 
rK17 

I;DK+K- 
-.- 
K°KoKo 

;;aA- 

2TrolTo 

-TO 
Knrl 

-TO 
K TT q’ 

a 
K n’r)’ 

i&J ’ 

-ii 
K r7rl 

-6-E 

-+T 

$6 T 

-E + 2T 

-E - T 

-E-T 

-$EtT 

<3 T 

-E 

$ZE 

-tE 

a E and T are the reduced matrix elements for decay into a symmetric 

octet and symmetric decimet, respectively. ABC means the state 

ABC t BAC + BCA + CBA t CAB t ACB. 
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APPENDIX 

Some Properties of The Weak Hamiltonian in an SU(4) Scheme 

Only since the discovery of the new narrow resonances has the 

group SU(4) intruded measurably upon the common consciousness of 

elementary particle physicists. For this reason the rudimentary 

properties of representations of SU(4) are not yet familiar, although 

they have long been known to virtuosi. To enable the unversed reader 

to appreciate the discussion of the transformation properties of the 

weak Hamiltonian presented in Sec. III, we review here the necessary 

elements of the charm scheme. 26 

We denote the basis for the fundamental (quark) representation 

:k 
4 by +@ and that for the conjugate (antiquark) representation 2 by 

lJLy : P+, where the index LY runs over the values (0,1,2, 3) corresponding 

to quarks (c, u, d, s ), and the dagger indicates Hermitian conjugation. 

We introduce the Kronecker symbol 6; and the totally antisymmetric 

four -index tensors E uhpv 
!KXpv = E (E 0123 = I)’ 

We shall use the 

symbol 5 to denote isomorphism, i. e. , to connect two quantities 

which transform in the same manner. For example, a totally anti- 

symmetric state of three quarks transforms like an antiquark: 

Gcu = ECVKh t” hhJp . (A. I) 

As in the usual SU(3) quark model, mesons are represented as quark- 
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antiquark pairs $ a+ 
P’ 

Thus, the familiar nonet is expanded to sixteen 

mesons which divide under SU(4) into a singlet $I’$ 
Y 

and a pentadecimet 

with the (traceless) basis 

T; Z $*Q - 2 $(&I~). (A.2) 

For what follows, it is useful to be conversant with some of the 

representations of low dimension, 
27 

which we have listed in Table A. 1. 

As we defined it in Sec. II, the charged weak current is 

J = Ga @a@ & (A.3) 

where flap is a 4 x 4 matrix with nonvanishing elements o03 = fli2 

= cos 8 
C and gi3 = - f102 = sin .9 C (Cabibbo angle). Anticipating 

a later need, ive remark that 

(~o+)=a?++o+~ =% 
Because flis traceless, the current J is a sum of elements of a 15- 

dimensional representation 

J = @$TP . (A. 5) (Y 

Consequently the nonleptonic weak interaction Hamiltonian is 

(A.6) 

We require the symmetric product of two pentadecimets, For 
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completeness, we include the general case of 

I,5 -8 1,5 = A c3 us c3 12~ tp 2,o 63 4,5 6 2“ B a,4 , (A.7) 

where the 20- and 84-dimensional representations which occur in the 

product are self-conjugate. In the 1,5 @ 12 basis, the occurrent 

representations can be expressed as 

where 

(;:,,’ = Tp Ty - Ty Tp 
Ly Y Q ff Y’ 

Ht;; = TtTz - T;T\ - TPTP + TLT; ; 
u a 

(45)PP - {@PI 1 
- Lye - M[cuo~ - 4 “!)IzA); + d)sA)p, 

where 

,{PP) - P P L(uo, - TaTD + T;Ti - TPTP - TET”, ; 
u Ly 

where 

+ TzTi + T;Tt + TiT; . 

: 
1 (A.8) 
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We need only consider the symmetric product which involves 

1 @ 4& 63 2,o 63 85. We have 

i Ti >TP, } = &(+; - $ +;} (1, + $ ‘2$)!; 

W.9) 

+ &)fE + ~(6pa’l55)~ - ; 5p&+ 6;(1,55)p,- $6p5s)~), 

which we must multiply by $ #a@ fit up to form %W. The last 

term gives rise to 

i(1_5s)r 
cc 

L?@+)crp - $ gap tr 0’ - $Q+,, tr0] 

which vanishes because of (A.41 and the tracelessness of (?-5S)L 

and f9. We therefore arrive at 

zw = (A. 10) 

as the representation structure of the nonleptonic weak interaction 

Hamiltonian. Obviously, the singlet cannot enter strangeness- or 

charm-changing transitions, so the (AC1 = i component of interest 

to us transforms like a linear combination of 2,O and 82. 

The Cabibbo-favored (cos 
2 

0,) charm-lowering decays are 

caused by the term cos2 BC [sc;d + ;dscl in 
%. 

As we have 

explained in Sec. III, we expect the matrix elements of the 2,O to 

be enhanced relative to those of the 82. The contribution of the 

dominant charm-lowering term to the 2,O is of the form 
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cos2 Oc [ &id - ;c;d - ;d;c + ;d>c 1 , 

which is a singlet under V-spin, the SU(2j subgroup which transforms 

the doublet ( z ), leaving d and c unchanged. Therefore, in the 

limit of STJ(3) symmetry, the enhanced Cabibbo-favored 1 AC [ = i 

transitions conserve V-spin. This is the easiest way to see that 

+ 
the decay D - zrr+ cannot proceed via an enhanced cos 

2 *c 

amplitude: the initial state has V = 0, but the (s-wave) final state 

has V = 1. 28 

In Sec. III, we discuss the SU(3) properties of the nonleptonic 

Hamiltonian. We would like to display some of the details here. 

We are concerned with the product of the charm-changing and charm- 

* conserving currents, which transform as elements of the representations 

[Jj (or [?“‘I j and [%I , respectively. To be explicit, the AC = 1 

product is 

{~s,&}cos2~C+({d~.,~~) -{;d,d;)}cost~~ sinBC- tcd,&)sin2 c’ 
c:’ 

which may be written as 
(A. il) 

Tti cos2ec + (T3 3~ - T;l)c~s Bc sin9 
C 

- T 3 
21 

sin20 
c ’ 

(A. 12) 

where 

Ti : (4 k+ r+ ‘t) j } - f 6k {+’ (J,+’ :;ij } (latin indices run over 
1, 2,3). (A. 13) 

In general, [%I @ 121 = [z’kl C+ [Al fB [ i5Ll. The states of 

each of these representations may be defined in this basis as 
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$1 i 7 Tij 

r61~_e~ij k Tij + l kij< 

[i&l; : Tit + Tj; - $6; Tj; - 2.6kT.P 4 j IP 

(A. 14) 

We remark that [kl and [ 1_5;1 are respectively antisymmetric 

and symmetric under exchange of the quark fields + i+ j. Consequently, 

the term of interest (Eq. A. 12) may be decomposed as 

$ r&y1 
i 

cos f3 2 c+(h5;I;, - 4, 21 [ 15.“ I 2 
1 

cos Bc sin sc - I ?;I l, sin28 
u 

+ a (61 22 L cos2ec + 2[kl 23 cos Bc sin Bc + [ 6J 33 sin’ 8 
3 c * 

(Notice that fj*l is absent. ) Assuming the sextet dominates over 

the pentadecimet gives Eq. (4. 1) of the text. 

In Sec. IV, we decompose octets and decimets into products 

of nonets. We shall indicate here how these decompositions can be 

easily worked out. Let Ni = $ ‘4 j (i, j = 1.2, 3) denote a nonet of 

quark-antiquark pairs. The identification of elements of the nonet 

with physical states depends on the mixing scheme. As indicated 

in Sec. II, this is different for pseudoscalars and vectors, for 

example. Of course,theSU(3) invariant subgroups of the nonet are 

the singlet 1~1 =Ntandoctet [iI: =N: -$ 6t.i. NOW consider 

the product of two such nonets, the pseudoscalars 9; and vectors 

“J’ . We wish to extract the octets and decimet from this 
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product. These are easily seen to be 

b3,l 3 = @,k - f 6 pyf, 

[g21; = ccgp$ - $6 f (gP+, 

[-I ijk = ek~m(tp:y~~ +piy-L) + ti’m(p;:yf’ir, +;qt.p-j ) 
m 

+ &~m(p~p; +y;yk,. 

It is sometimes more convenient to rearrange the two octets into 

symmetric and antisymmetric combinations [>,I = i [gil + [221 

and [gA1 = i 
> 

[z,l - [j,l 
> 

. 
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Table A. 1 

SU(4) Representations of Low Dimensiona 

Representation Young Diagram 

4 a 

:g 

4 i 

” 
6 =6 R L_ - 

W(3) Subgroups Charm 

0 

1 

r,ll 
r3J 

b3 
r.3J 

r&j 
[21@ [81 

+-- 
I<] 

::: 
20 = 20 -v\ 

-1 

0 

0 

1 

0 

1 

2 

-1 

0 

I 

-i 

0 

1 

0 

1 

2 

0 

1 

2 

3 

20’ 

20” 
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Representation Young Diagram SU(3) Subgroup 

45 13’a k$ 

[.8/j fB rio-I 

r3J 18 [6J 

ri 

Charm 

-1 

0 

1 

2 

-2 

-1 

[~@r&l CB 12Jil 0 
:* 

[Al @ rg$ 1 
r6J 2 

aFor typographical reasons, noncontiguous squares are used instead 
of the contiguous squares conventional in Young diagrams. 
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